This function takes the input file (a previously created poped database) supplied by the user, or function arguments, and creates a database that can then be used to run all other PopED functions. The function supplies default values to elements of the database that are not specified in the input file or as function arguments. Default arguments are supplied in the Usage section (easiest to use a text search to find values you are interested in).
Usage
create.poped.database(
popedInput = list(),
ff_file = NULL,
ff_fun = poped.choose(popedInput$model$ff_pointer, NULL),
fg_file = NULL,
fg_fun = poped.choose(popedInput$model$fg_pointer, NULL),
fError_file = NULL,
fError_fun = poped.choose(popedInput$model$ferror_pointer, NULL),
optsw = poped.choose(popedInput$settings$optsw, cbind(0, 0, 0, 0, 0)),
xt = poped.choose(popedInput$design[["xt"]], stop("'xt' needs to be defined")),
m = poped.choose(popedInput$design[["m"]], NULL),
x = poped.choose(popedInput$design[["x"]], NULL),
nx = poped.choose(popedInput$design$nx, NULL),
a = poped.choose(popedInput$design[["a"]], NULL),
groupsize = poped.choose(popedInput$design$groupsize,
stop("'groupsize' needs to be defined")),
ni = poped.choose(popedInput$design$ni, NULL),
model_switch = poped.choose(popedInput$design$model_switch, NULL),
maxni = poped.choose(popedInput$design_space$maxni, NULL),
minni = poped.choose(popedInput$design_space$minni, NULL),
maxtotni = poped.choose(popedInput$design_space$maxtotni, NULL),
mintotni = poped.choose(popedInput$design_space$mintotni, NULL),
maxgroupsize = poped.choose(popedInput$design_space$maxgroupsize, NULL),
mingroupsize = poped.choose(popedInput$design_space$mingroupsize, NULL),
maxtotgroupsize = poped.choose(popedInput$design_space$maxtotgroupsize, NULL),
mintotgroupsize = poped.choose(popedInput$design_space$mintotgroupsize, NULL),
maxxt = poped.choose(popedInput$design_space$maxxt, NULL),
minxt = poped.choose(popedInput$design_space$minxt, NULL),
discrete_xt = poped.choose(popedInput$design_space$xt_space, NULL),
discrete_x = poped.choose(popedInput$design_space$discrete_x, NULL),
maxa = poped.choose(popedInput$design_space$maxa, NULL),
mina = poped.choose(popedInput$design_space$mina, NULL),
discrete_a = poped.choose(popedInput$design_space$a_space, NULL),
bUseGrouped_xt = poped.choose(popedInput$design_space$bUseGrouped_xt, FALSE),
G_xt = poped.choose(popedInput$design_space$G_xt, NULL),
bUseGrouped_a = poped.choose(popedInput$design_space$bUseGrouped_a, FALSE),
G_a = poped.choose(popedInput$design_space$G_a, NULL),
bUseGrouped_x = poped.choose(popedInput$design_space$bUseGrouped_x, FALSE),
G_x = poped.choose(popedInput$design_space[["G_x"]], NULL),
iFIMCalculationType = poped.choose(popedInput$settings$iFIMCalculationType, 1),
iApproximationMethod = poped.choose(popedInput$settings$iApproximationMethod, 0),
iFOCENumInd = poped.choose(popedInput$settings$iFOCENumInd, 1000),
prior_fim = poped.choose(popedInput$settings$prior_fim, matrix(0, 0, 1)),
strAutoCorrelationFile = poped.choose(popedInput$model$auto_pointer, ""),
d_switch = poped.choose(popedInput$settings$d_switch, 1),
ofv_calc_type = poped.choose(popedInput$settings$ofv_calc_type, 4),
ds_index = popedInput$parameters$ds_index,
strEDPenaltyFile = poped.choose(popedInput$settings$strEDPenaltyFile, ""),
ofv_fun = poped.choose(popedInput$settings$ofv_fun, NULL),
iEDCalculationType = poped.choose(popedInput$settings$iEDCalculationType, 0),
ED_samp_size = poped.choose(popedInput$settings$ED_samp_size, 45),
bLHS = poped.choose(popedInput$settings$bLHS, 1),
strUserDistributionFile = poped.choose(popedInput$model$user_distribution_pointer, ""),
nbpop = popedInput$parameters$nbpop,
NumRanEff = popedInput$parameters$NumRanEff,
NumDocc = popedInput$parameters$NumDocc,
NumOcc = popedInput$parameters$NumOcc,
bpop = poped.choose(popedInput$parameters$bpop, stop("bpop must be defined")),
d = poped.choose(popedInput$parameters$d, NULL),
covd = popedInput$parameters$covd,
sigma = popedInput$parameters$sigma,
docc = poped.choose(popedInput$parameters$docc, matrix(0, 0, 3)),
covdocc = poped.choose(popedInput$parameters$covdocc, zeros(1, length(docc[, 2, drop =
F]) * (length(docc[, 2, drop = F]) - 1)/2)),
notfixed_bpop = popedInput$parameters$notfixed_bpop,
notfixed_d = popedInput$parameters$notfixed_d,
notfixed_covd = popedInput$parameters$notfixed_covd,
notfixed_docc = popedInput$parameters$notfixed_docc,
notfixed_covdocc = poped.choose(popedInput$parameters$notfixed_covdocc, zeros(1,
length(covdocc))),
notfixed_sigma = poped.choose(popedInput$parameters$notfixed_sigma, t(rep(1,
size(sigma, 2)))),
notfixed_covsigma = poped.choose(popedInput$parameters$notfixed_covsigma, zeros(1,
length(notfixed_sigma) * (length(notfixed_sigma) - 1)/2)),
reorder_parameter_vectors = FALSE,
bUseRandomSearch = poped.choose(popedInput$settings$bUseRandomSearch, TRUE),
bUseStochasticGradient = poped.choose(popedInput$settings$bUseStochasticGradient, TRUE),
bUseLineSearch = poped.choose(popedInput$settings$bUseLineSearch, TRUE),
bUseExchangeAlgorithm = poped.choose(popedInput$settings$bUseExchangeAlgorithm, FALSE),
bUseBFGSMinimizer = poped.choose(popedInput$settings$bUseBFGSMinimizer, FALSE),
EACriteria = poped.choose(popedInput$settings$EACriteria, 1),
strRunFile = poped.choose(popedInput$settings$run_file_pointer, ""),
poped_version = poped.choose(popedInput$settings$poped_version,
packageVersion("PopED")),
modtit = poped.choose(popedInput$settings$modtit, "PopED model"),
output_file = poped.choose(popedInput$settings$output_file, paste("PopED_output",
"_summary", sep = "")),
output_function_file = poped.choose(popedInput$settings$output_function_file,
paste("PopED", "_output_", sep = "")),
strIterationFileName = poped.choose(popedInput$settings$strIterationFileName,
paste("PopED", "_current.R", sep = "")),
user_data = poped.choose(popedInput$settings$user_data, cell(0, 0)),
ourzero = poped.choose(popedInput$settings$ourzero, 1e-05),
dSeed = poped.choose(popedInput$settings$dSeed, NULL),
line_opta = poped.choose(popedInput$settings$line_opta, NULL),
line_optx = poped.choose(popedInput$settings$line_optx, NULL),
bShowGraphs = poped.choose(popedInput$settings$bShowGraphs, FALSE),
use_logfile = poped.choose(popedInput$settings$use_logfile, FALSE),
m1_switch = poped.choose(popedInput$settings$m1_switch, 1),
m2_switch = poped.choose(popedInput$settings$m2_switch, 1),
hle_switch = poped.choose(popedInput$settings$hle_switch, 1),
gradff_switch = poped.choose(popedInput$settings$gradff_switch, 1),
gradfg_switch = poped.choose(popedInput$settings$gradfg_switch, 1),
grad_all_switch = poped.choose(popedInput$settings$grad_all_switch, 1),
rsit_output = poped.choose(popedInput$settings$rsit_output, 5),
sgit_output = poped.choose(popedInput$settings$sgit_output, 1),
hm1 = poped.choose(popedInput$settings[["hm1"]], 1e-05),
hlf = poped.choose(popedInput$settings[["hlf"]], 1e-05),
hlg = poped.choose(popedInput$settings[["hlg"]], 1e-05),
hm2 = poped.choose(popedInput$settings[["hm2"]], 1e-05),
hgd = poped.choose(popedInput$settings[["hgd"]], 1e-05),
hle = poped.choose(popedInput$settings[["hle"]], 1e-05),
AbsTol = poped.choose(popedInput$settings$AbsTol, 1e-06),
RelTol = poped.choose(popedInput$settings$RelTol, 1e-06),
iDiffSolverMethod = poped.choose(popedInput$settings$iDiffSolverMethod, NULL),
bUseMemorySolver = poped.choose(popedInput$settings$bUseMemorySolver, FALSE),
rsit = poped.choose(popedInput$settings[["rsit"]], 300),
sgit = poped.choose(popedInput$settings[["sgit"]], 150),
intrsit = poped.choose(popedInput$settings$intrsit, 250),
intsgit = poped.choose(popedInput$settings$intsgit, 50),
maxrsnullit = poped.choose(popedInput$settings$maxrsnullit, 50),
convergence_eps = poped.choose(popedInput$settings$convergence_eps, 1e-08),
rslxt = poped.choose(popedInput$settings$rslxt, 10),
rsla = poped.choose(popedInput$settings$rsla, 10),
cfaxt = poped.choose(popedInput$settings$cfaxt, 0.001),
cfaa = poped.choose(popedInput$settings$cfaa, 0.001),
bGreedyGroupOpt = poped.choose(popedInput$settings$bGreedyGroupOpt, FALSE),
EAStepSize = poped.choose(popedInput$settings$EAStepSize, 0.01),
EANumPoints = poped.choose(popedInput$settings$EANumPoints, FALSE),
EAConvergenceCriteria = poped.choose(popedInput$settings$EAConvergenceCriteria, 1e-20),
bEANoReplicates = poped.choose(popedInput$settings$bEANoReplicates, FALSE),
BFGSConvergenceCriteriaMinStep = NULL,
BFGSProjectedGradientTol = poped.choose(popedInput$settings$BFGSProjectedGradientTol,
1e-04),
BFGSTolerancef = poped.choose(popedInput$settings$BFGSTolerancef, 0.001),
BFGSToleranceg = poped.choose(popedInput$settings$BFGSToleranceg, 0.9),
BFGSTolerancex = poped.choose(popedInput$settings$BFGSTolerancex, 0.1),
ED_diff_it = poped.choose(popedInput$settings$ED_diff_it, 30),
ED_diff_percent = poped.choose(popedInput$settings$ED_diff_percent, 10),
line_search_it = poped.choose(popedInput$settings$ls_step_size, 50),
Doptim_iter = poped.choose(popedInput$settings$iNumSearchIterationsIfNotLineSearch, 1),
iCompileOption = poped.choose(popedInput$settings$parallel$iCompileOption, -1),
iUseParallelMethod = poped.choose(popedInput$settings$parallel$iUseParallelMethod, 1),
MCC_Dep = NULL,
strExecuteName = poped.choose(popedInput$settings$parallel$strExecuteName,
"calc_fim.exe"),
iNumProcesses = poped.choose(popedInput$settings$parallel$iNumProcesses, 2),
iNumChunkDesignEvals = poped.choose(popedInput$settings$parallel$iNumChunkDesignEvals,
-2),
Mat_Out_Pre = poped.choose(popedInput$settings$parallel$strMatFileOutputPrefix,
"parallel_output"),
strExtraRunOptions = poped.choose(popedInput$settings$parallel$strExtraRunOptions, ""),
dPollResultTime = poped.choose(popedInput$settings$parallel$dPollResultTime, 0.1),
strFunctionInputName = poped.choose(popedInput$settings$parallel$strFunctionInputName,
"function_input"),
bParallelRS = poped.choose(popedInput$settings$parallel$bParallelRS, FALSE),
bParallelSG = poped.choose(popedInput$settings$parallel$bParallelSG, FALSE),
bParallelMFEA = poped.choose(popedInput$settings$parallel$bParallelMFEA, FALSE),
bParallelLS = poped.choose(popedInput$settings$parallel$bParallelLS, FALSE)
)
Arguments
- popedInput
A PopED database file or an empty list
list()
. List elements should match the values seen in the Usage section (the defaults to function arguments).- ff_file
******START OF MODEL DEFINITION OPTIONS**********
A string giving the function name or filename and path of the structural model. The filename and the function name must be the same if giving a filename. e.g.
"ff.PK.1.comp.oral.md.KE"
- ff_fun
Function describing the structural model. e.g.
ff.PK.1.comp.oral.md.KE
.- fg_file
A string giving the function name or filename and path of the parameter model. The filename and the function name must be the same if giving a filename. e.g.
"parameter.model"
- fg_fun
Function describing the parameter model. e.g.
parameter.model
.- fError_file
A string giving the function name or filename and path of the residual error model. The filename and the function name must be the same if giving a filename. e.g.
"feps.prop"
.- fError_fun
Function describing the residual error model. e.g.
feps.prop
.- optsw
******WHAT TO OPTIMIZE**********
Row vector of optimization tasks (1=TRUE,0=FALSE) in the following order: (Samples per subject, Sampling schedule, Discrete design variable, Continuous design variable, Number of id per group). All elements set to zero => only calculate the FIM with current design
- xt
******START OF INITIAL DESIGN OPTIONS**********
Matrix defining the initial sampling schedule. Each row is a group/individual. If only one vector is supplied, e.g.
c(1,2,3,4)
, then all groups will have the same initial design.- m
Number of groups in the study. Each individual in a group will have the same design.
- x
A matrix defining the initial discrete values for the model Each row is a group/individual.
- nx
Number of discrete design variables.
- a
Matrix defining the initial continuous covariate values. n_rows=number of groups, n_cols=number of covariates. If the number of rows is one and the number of groups > 1 then all groups are assigned the same values.
- groupsize
Vector defining the size of the different groups (num individuals in each group). If only one number then the number will be the same in every group.
- ni
Vector defining the number of samples for each group.
- model_switch
Matrix defining which response a certain sampling time belongs to.
- maxni
******START OF DESIGN SPACE OPTIONS**********
Max number of samples per group/individual
- minni
Min number of samples per group/individual
- maxtotni
Number defining the maximum number of samples allowed in the experiment.
- mintotni
Number defining the minimum number of samples allowed in the experiment.
- maxgroupsize
Vector defining the max size of the different groups (max number of individuals in each group)
- mingroupsize
Vector defining the min size of the different groups (min num individuals in each group) –
- maxtotgroupsize
The total maximal groupsize over all groups
- mintotgroupsize
The total minimal groupsize over all groups
- maxxt
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value.
- minxt
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value
- discrete_xt
Cell array
cell
defining the discrete variables allowed for each xt value. Can also be a list of valueslist(1:10)
(same values allowed for all xt), or a list of listslist(1:10, 2:23, 4:6)
(one for each value in xt). See examples increate_design_space
.- discrete_x
Cell array defining the discrete variables for each x value. See examples in
create_design_space
.- maxa
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value
- mina
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value
- discrete_a
Cell array
cell
defining the discrete variables allowed for each a value. Can also be a list of valueslist(1:10)
(same values allowed for all a), or a list of listslist(1:10, 2:23, 4:6)
(one for each value in a). See examples increate_design_space
.- bUseGrouped_xt
Use grouped time points (1=TRUE, 0=FALSE).
- G_xt
Matrix defining the grouping of sample points. Matching integers mean that the points are matched.
- bUseGrouped_a
Use grouped covariates (1=TRUE, 0=FALSE)
- G_a
Matrix defining the grouping of covariates. Matching integers mean that the points are matched.
- bUseGrouped_x
Use grouped discrete design variables (1=TRUE, 0=FALSE).
- G_x
Matrix defining the grouping of discrete design variables. Matching integers mean that the points are matched.
- iFIMCalculationType
******START OF FIM CALCULATION OPTIONS**********
Fisher Information Matrix type
0=Full FIM
1=Reduced FIM
2=weighted models
3=Loc models
4=reduced FIM with derivative of SD of sigma as in PFIM
5=FULL FIM parameterized with A,B,C matrices & derivative of variance
6=Calculate one model switch at a time, good for large matrices
7=Reduced FIM parameterized with A,B,C matrices & derivative of variance
- iApproximationMethod
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI
- iFOCENumInd
Num individuals in each step of FOCE
- prior_fim
The prior FIM (added to calculated FIM)
- strAutoCorrelationFile
Filename and path, or function name, for the Autocorrelation function, empty string means no autocorrelation.
- d_switch
******START OF CRITERION SPECIFICATION OPTIONS**********
D-family design (1) or ED-family design (0) (with or without parameter uncertainty)
- ofv_calc_type
OFV calculation type for FIM
1 = "D-optimality". Determinant of the FIM: det(FIM)
2 = "A-optimality". Inverse of the sum of the expected parameter variances: 1/trace_matrix(inv(FIM))
4 = "lnD-optimality". Natural logarithm of the determinant of the FIM: log(det(FIM))
6 = "Ds-optimality". Ratio of the Determinant of the FIM and the Determinant of the uninteresting rows and columns of the FIM: det(FIM)/det(FIM_u)
7 = Inverse of the sum of the expected parameter RSE: 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))
- ds_index
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0. size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma. Default is the fixed effects being important, everything else not important. Used in conjunction with
ofv_calc_type=6
.- strEDPenaltyFile
Penalty function name or path and filename, empty string means no penalty. User defined criterion can be defined this way.
- ofv_fun
User defined function used to compute the objective function. The function must have a poped database object as its first argument and have "..." in its argument list. Can be referenced as a function or as a file name where the function defined in the file has the same name as the file. e.g. "cost.txt" has a function named "cost" in it.
- iEDCalculationType
******START OF E-FAMILY CRITERION SPECIFICATION OPTIONS**********
ED Integral Calculation, 0=Monte-Carlo-Integration, 1=Laplace Approximation, 2=BFGS Laplace Approximation – –
- ED_samp_size
Sample size for E-family sampling
- bLHS
How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube –
- strUserDistributionFile
Filename and path, or function name, for user defined distributions for E-family designs
- nbpop
******START OF Model parameters SPECIFICATION OPTIONS**********
Number of typical values
- NumRanEff
Number of IIV parameters. Typically can be computed from other values and not supplied.
- NumDocc
Number of IOV variance parameters. Typically can be computed from other values and not supplied.
- NumOcc
Number of occasions. Typically can be computed from other values and not supplied.
- bpop
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
column 1 the type of the distribution for E-family designs (0 = Fixed, 1 = Normal, 2 = Uniform, 3 = User Defined Distribution, 4 = lognormal and 5 = truncated normal)
column 2 defines the mean.
column 3 defines the variance of the distribution (or length of uniform distribution).
Can also just supply the parameter values as a vector
c()
if no uncertainty around the parameter value is to be used. The parameter order of 'bpop' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'bpop' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`.- d
Matrix defining the diagonals of the IIV (same logic as for the fixed effects matrix bpop to define uncertainty). One can also just supply the parameter values as a
c()
. The parameter order of 'd' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'd' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`.- covd
Column major vector defining the covariances of the IIV variances. That is, from your full IIV matrix
covd <- IIV[lower.tri(IIV)]
.- sigma
Matrix defining the variances can covariances of the residual variability terms of the model. can also just supply the diagonal parameter values (variances) as a
c()
.- docc
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop.
- covdocc
Column major vector defining the covariance of the IOV, as in covd.
- notfixed_bpop
******START OF Model parameters fixed or not SPECIFICATION OPTIONS**********
Vector defining if a typical value is fixed or not (1=not fixed, 0=fixed). The parameter order of 'notfixed_bpop' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'notfixed_bpop' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`.
- notfixed_d
Vector defining if a IIV is fixed or not (1=not fixed, 0=fixed). The parameter order of 'notfixed_d' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'notfixed_d' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`. .
- notfixed_covd
Vector defining if a covariance IIV is fixed or not (1=not fixed, 0=fixed)
- notfixed_docc
Vector defining if an IOV variance is fixed or not (1=not fixed, 0=fixed)
- notfixed_covdocc
Vector row major order for lower triangular matrix defining if a covariance IOV is fixed or not (1=not fixed, 0=fixed)
- notfixed_sigma
Vector defining if a residual error parameter is fixed or not (1=not fixed, 0=fixed)
- notfixed_covsigma
Vector defining if a covariance residual error parameter is fixed or not (1=not fixed, 0=fixed). Default is fixed.
- reorder_parameter_vectors
If you use named arguments in 'bpop' or 'd' then PopED will try to figure out the order of the parameters based on what is found in the 'fg_fun'. See the resulting `poped_db$parameters` and make sure the order matches with 'fg_fun'.
- bUseRandomSearch
******START OF Optimization algorithm SPECIFICATION OPTIONS**********
Use random search (1=TRUE, 0=FALSE)
- bUseStochasticGradient
Use Stochastic Gradient search (1=TRUE, 0=FALSE)
- bUseLineSearch
Use Line search (1=TRUE, 0=FALSE)
- bUseExchangeAlgorithm
Use Exchange algorithm (1=TRUE, 0=FALSE)
- bUseBFGSMinimizer
Use BFGS Minimizer (1=TRUE, 0=FALSE)
- EACriteria
Exchange Algorithm Criteria, 1 = Modified, 2 = Fedorov
- strRunFile
Filename and path, or function name, for a run file that is used instead of the regular PopED call.
- poped_version
******START OF Labeling and file names SPECIFICATION OPTIONS**********
The current PopED version
- modtit
The model title
- output_file
Filename and path of the output file during search
- output_function_file
Filename suffix of the result function file
- strIterationFileName
Filename and path for storage of current optimal design
- user_data
******START OF Miscellaneous SPECIFICATION OPTIONS**********
User defined data structure that, for example could be used to send in data to the model
- ourzero
Value to interpret as zero in design
- dSeed
The seed number used for optimization and sampling – integer or -1 which creates a random seed
as.integer(Sys.time())
or NULL.- line_opta
Vector for line search on continuous design variables (1=TRUE,0=FALSE)
- line_optx
Vector for line search on discrete design variables (1=TRUE,0=FALSE)
- bShowGraphs
Use graph output during search
- use_logfile
If a log file should be used (0=FALSE, 1=TRUE)
- m1_switch
Method used to calculate M1 (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation)
- m2_switch
Method used to calculate M2 (0=Central difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation)
- hle_switch
Method used to calculate linearization of residual error (0=Complex difference, 1=Central difference, 30=Automatic differentiation)
- gradff_switch
Method used to calculate the gradient of the model (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation)
- gradfg_switch
Method used to calculate the gradient of the parameter vector g (0=Complex difference, 1=Central difference, 20=Analytic derivative, 30=Automatic differentiation)
- grad_all_switch
Method used to calculate all the gradients (0=Complex difference, 1=Central difference)
- rsit_output
Number of iterations in random search between screen output
- sgit_output
Number of iterations in stochastic gradient search between screen output
- hm1
Step length of derivative of linearized model w.r.t. typical values
- hlf
Step length of derivative of model w.r.t. g
- hlg
Step length of derivative of g w.r.t. b
- hm2
Step length of derivative of variance w.r.t. typical values
- hgd
Step length of derivative of OFV w.r.t. time
- hle
Step length of derivative of model w.r.t. sigma
- AbsTol
The absolute tolerance for the diff equation solver
- RelTol
The relative tolerance for the diff equation solver
- iDiffSolverMethod
The diff equation solver method, NULL as default.
- bUseMemorySolver
If the differential equation results should be stored in memory (1) or not (0)
- rsit
Number of Random search iterations
- sgit
Number of stochastic gradient iterations
- intrsit
Number of Random search iterations with discrete optimization.
- intsgit
Number of Stochastic Gradient search iterations with discrete optimization
- maxrsnullit
Iterations until adaptive narrowing in random search
- convergence_eps
Stochastic Gradient convergence value, (difference in OFV for D-optimal, difference in gradient for ED-optimal)
- rslxt
Random search locality factor for sample times
- rsla
Random search locality factor for covariates
- cfaxt
Stochastic Gradient search first step factor for sample times
- cfaa
Stochastic Gradient search first step factor for covariates
- bGreedyGroupOpt
Use greedy algorithm for group assignment optimization
- EAStepSize
Exchange Algorithm StepSize
- EANumPoints
Exchange Algorithm NumPoints
- EAConvergenceCriteria
Exchange Algorithm Convergence Limit/Criteria
- bEANoReplicates
Avoid replicate samples when using Exchange Algorithm
- BFGSConvergenceCriteriaMinStep
BFGS Minimizer Convergence Criteria Minimum Step
- BFGSProjectedGradientTol
BFGS Minimizer Convergence Criteria Normalized Projected Gradient Tolerance
- BFGSTolerancef
BFGS Minimizer Line Search Tolerance f
- BFGSToleranceg
BFGS Minimizer Line Search Tolerance g
- BFGSTolerancex
BFGS Minimizer Line Search Tolerance x
- ED_diff_it
Number of iterations in ED-optimal design to calculate convergence criteria
- ED_diff_percent
ED-optimal design convergence criteria in percent
- line_search_it
Number of grid points in the line search
- Doptim_iter
Number of iterations of full Random search and full Stochastic Gradient if line search is not used
- iCompileOption
******START OF PARALLEL OPTIONS********** Compile options for PopED
-1 = No compilation,
0 or 3 = Full compilation,
1 or 4 = Only using MCC (shared lib),
2 or 5 = Only MPI,
Option 0,1,2 runs PopED and option 3,4,5 stops after compilation
- iUseParallelMethod
Parallel method to use (0 = Matlab PCT, 1 = MPI)
- MCC_Dep
Additional dependencies used in MCC compilation (mat-files), if several space separated
- strExecuteName
Compilation output executable name
- iNumProcesses
Number of processes to use when running in parallel (e.g. 3 = 2 workers, 1 job manager)
- iNumChunkDesignEvals
Number of design evaluations that should be evaluated in each process before getting new work from job manager
- Mat_Out_Pre
The prefix of the output mat file to communicate with the executable
- strExtraRunOptions
Extra options send to e$g. the MPI executable or a batch script, see execute_parallel$m for more information and options
- dPollResultTime
Polling time to check if the parallel execution is finished
- strFunctionInputName
The file containing the popedInput structure that should be used to evaluate the designs
- bParallelRS
If the random search is going to be executed in parallel
- bParallelSG
If the stochastic gradient search is going to be executed in parallel
- bParallelMFEA
If the modified exchange algorithm is going to be executed in parallel
- bParallelLS
If the line search is going to be executed in parallel
See also
Other poped_input:
convert_variables()
,
create_design()
,
create_design_space()
,
downsizing_general_design()
,
poped.choose()
Examples
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
library(PopED)
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.md.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> N = floor(xt/TAU) + 1
#> y = (DOSE * Favail/V) * (KA/(KA - CL/V)) * (exp(-CL/V *
#> (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 -
#> exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) *
#> (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557071c69eb0>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(
ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=0.01,
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70)
## evaluate initial design
evaluate_design(poped.db)
#> $ofv
#> [1] 52.44799
#>
#> $fim
#> CL V KA d_CL d_V
#> CL 19821.28445 -21.836551 -8.622140 0.000000e+00 0.000000
#> V -21.83655 20.656071 -1.807099 0.000000e+00 0.000000
#> KA -8.62214 -1.807099 51.729039 0.000000e+00 0.000000
#> d_CL 0.00000 0.000000 0.000000 3.107768e+03 10.728786
#> d_V 0.00000 0.000000 0.000000 1.072879e+01 27307.089308
#> d_KA 0.00000 0.000000 0.000000 2.613561e-02 3.265608
#> SIGMA[1,1] 0.00000 0.000000 0.000000 5.215403e+02 11214.210707
#> d_KA SIGMA[1,1]
#> CL 0.00000000 0.00000
#> V 0.00000000 0.00000
#> KA 0.00000000 0.00000
#> d_CL 0.02613561 521.54030
#> d_V 3.26560786 11214.21071
#> d_KA 41.81083599 71.08764
#> SIGMA[1,1] 71.08763902 806176.95068
#>
#> $rse
#> CL V KA d_CL d_V d_KA SIGMA[1,1]
#> 4.738266 2.756206 13.925829 25.627205 30.344316 25.777327 11.170784
#>