
Package index
-
PopEDPopED-package - PopED - Population (and individual) optimal Experimental Design.
-
ff.PK.1.comp.oral.md.CL() - Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL.
-
ff.PK.1.comp.oral.md.KE() - Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
-
ff.PK.1.comp.oral.sd.CL() - Structural model: one-compartment, oral absorption, single bolus dose, parameterized using CL.
-
ff.PK.1.comp.oral.sd.KE() - Structural model: one-compartment, oral absorption, single bolus dose, parameterized using KE.
-
ff.PKPD.1.comp.oral.md.CL.imax() - Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL driving an inhibitory IMAX model with a direct effect.
-
ff.PKPD.1.comp.sd.CL.emax() - Structural model: one-compartment, single bolus IV dose, parameterized using CL driving an EMAX model with a direct effect.
-
build_sfg() - Build PopED parameter function from a model function
-
feps.add() - RUV model: Additive .
-
feps.add.prop() - RUV model: Additive and Proportional.
-
feps.prop() - RUV model: Proportional.
Create an initial study design and design space
Create an initial study design, and design space, if optimizing. Input the design and model information into a format that PopED understands.
-
create.poped.database() - Create a PopED database
-
create_design() - Create design variables for a full description of a design.
-
create_design_space() - Create design variables and a design space for a full description of an optimization problem.
-
plot_model_prediction() - Plot model predictions
-
model_prediction() - Model predictions
-
evaluate.e.ofv.fim() - Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM).
-
evaluate.fim() - Evaluate the Fisher Information Matrix (FIM)
-
evaluate_design() - Evaluate a design
-
evaluate_fim_map() - Compute the Bayesian Fisher information matrix
-
evaluate_power() - Power of a design to estimate a parameter.
-
shrinkage() - Predict shrinkage of empirical Bayes estimates (EBEs) in a population model
-
calc_ofv_and_fim() - Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for either point values or parameters or distributions.
-
ofv_fim() - Evaluate a criterion of the Fisher Information Matrix (FIM)
-
ofv_criterion() - Normalize an objective function by the size of the FIM matrix
-
get_rse() - Compute the expected parameter relative standard errors
-
plot_efficiency_of_windows() - Plot the efficiency of windows
-
efficiency() - Compute efficiency.
-
design_summary() - Display a summary of output from poped_db
-
poped_optim() - Optimize a design defined in a PopED database
-
summary(<poped_optim>) - Display a summary of output from poped_optim
-
optim_ARS() - Optimize a function using adaptive random search.
-
optim_LS() - Optimize a function using a line search algorithm.
-
optimize_groupsize() - Title Optimize the proportion of individuals in the design groups
-
optimize_n_eff() - Translate efficiency to number of subjects
-
optimize_n_rse() - Optimize the number of subjects based on desired uncertainty of a parameter.
-
LEDoptim() - Optimization function for D-family, E-family and Laplace approximated ED designs
-
RS_opt() - Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs.
-
a_line_search() - Optimize using line search
-
poped_optimize() - Retired optimization module for PopED
-
cell() - Create a cell array (a matrix of lists)
-
mc_mean() - Compute the monte-carlo mean of a function
-
median_hilow_poped() - Wrap summary functions from Hmisc and ggplot to work with stat_summary in ggplot
-
ones() - Create a matrix of ones
-
pargen() - Parameter simulation
-
poped_gui() - Run the graphical interface for PopED
-
size() - Function written to match MATLAB's size function
-
start_parallel() - Start parallel computational processes
-
tic() - Timer function (as in MATLAB)
-
toc() - Timer function (as in MATLAB)
-
zeros() - Create a matrix of zeros.