Package index
-
PopED
PopED-package
- PopED - Population (and individual) optimal Experimental Design.
-
ff.PK.1.comp.oral.md.CL()
- Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL.
-
ff.PK.1.comp.oral.md.KE()
- Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
-
ff.PK.1.comp.oral.sd.CL()
- Structural model: one-compartment, oral absorption, single bolus dose, parameterized using CL.
-
ff.PK.1.comp.oral.sd.KE()
- Structural model: one-compartment, oral absorption, single bolus dose, parameterized using KE.
-
ff.PKPD.1.comp.oral.md.CL.imax()
- Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL driving an inhibitory IMAX model with a direct effect.
-
ff.PKPD.1.comp.sd.CL.emax()
- Structural model: one-compartment, single bolus IV dose, parameterized using CL driving an EMAX model with a direct effect.
-
build_sfg()
- Build PopED parameter function from a model function
-
feps.add()
- RUV model: Additive .
-
feps.add.prop()
- RUV model: Additive and Proportional.
-
feps.prop()
- RUV model: Proportional.
Create an initial study design and design space
Create an initial study design, and design space, if optimizing. Input the design and model information into a format that PopED understands.
-
create.poped.database()
- Create a PopED database
-
create_design()
- Create design variables for a full description of a design.
-
create_design_space()
- Create design variables and a design space for a full description of an optimization problem.
-
plot_model_prediction()
- Plot model predictions
-
model_prediction()
- Model predictions
-
evaluate.e.ofv.fim()
- Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM).
-
evaluate.fim()
- Evaluate the Fisher Information Matrix (FIM)
-
evaluate_design()
- Evaluate a design
-
evaluate_fim_map()
- Compute the Bayesian Fisher information matrix
-
evaluate_power()
- Power of a design to estimate a parameter.
-
shrinkage()
- Predict shrinkage of empirical Bayes estimates (EBEs) in a population model
-
calc_ofv_and_fim()
- Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for either point values or parameters or distributions.
-
ofv_fim()
- Evaluate a criterion of the Fisher Information Matrix (FIM)
-
ofv_criterion()
- Normalize an objective function by the size of the FIM matrix
-
get_rse()
- Compute the expected parameter relative standard errors
-
plot_efficiency_of_windows()
- Plot the efficiency of windows
-
efficiency()
- Compute efficiency.
-
design_summary()
- Display a summary of output from poped_db
-
poped_optim()
- Optimize a design defined in a PopED database
-
summary(<poped_optim>)
- Display a summary of output from poped_optim
-
optim_ARS()
- Optimize a function using adaptive random search.
-
optim_LS()
- Optimize a function using a line search algorithm.
-
optimize_groupsize()
- Title Optimize the proportion of individuals in the design groups
-
optimize_n_eff()
- Translate efficiency to number of subjects
-
optimize_n_rse()
- Optimize the number of subjects based on desired uncertainty of a parameter.
-
LEDoptim()
- Optimization function for D-family, E-family and Laplace approximated ED designs
-
RS_opt()
- Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs.
-
a_line_search()
- Optimize using line search
-
poped_optimize()
- Retired optimization module for PopED
-
cell()
- Create a cell array (a matrix of lists)
-
mc_mean()
- Compute the monte-carlo mean of a function
-
median_hilow_poped()
- Wrap summary functions from Hmisc and ggplot to work with stat_summary in ggplot
-
ones()
- Create a matrix of ones
-
pargen()
- Parameter simulation
-
poped_gui()
- Run the graphical interface for PopED
-
size()
- Function written to match MATLAB's size function
-
start_parallel()
- Start parallel computational processes
-
tic()
- Timer function (as in MATLAB)
-
toc()
- Timer function (as in MATLAB)
-
zeros()
- Create a matrix of zeros.