Efficiency calculation between two designs.
Usage
efficiency(
ofv_init,
ofv_final,
poped_db,
npar = get_fim_size(poped_db),
ofv_calc_type = poped_db$settings$ofv_calc_type,
ds_index = poped_db$parameters$ds_index,
use_log = TRUE,
...
)
Arguments
- ofv_init
An initial objective function
- ofv_final
A final objective function.
- poped_db
a poped database
- npar
The number of parameters to use for normalization.
- ofv_calc_type
OFV calculation type for FIM
1 = "D-optimality". Determinant of the FIM: det(FIM)
2 = "A-optimality". Inverse of the sum of the expected parameter variances: 1/trace_matrix(inv(FIM))
4 = "lnD-optimality". Natural logarithm of the determinant of the FIM: log(det(FIM))
6 = "Ds-optimality". Ratio of the Determinant of the FIM and the Determinant of the uninteresting rows and columns of the FIM: det(FIM)/det(FIM_u)
7 = Inverse of the sum of the expected parameter RSE: 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))
- ds_index
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0. size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma. Default is the fixed effects being important, everything else not important. Used in conjunction with
ofv_calc_type=6
.- use_log
Are the `ofv` arguments in the log space?
- ...
arguments passed to
evaluate.fim
andofv_fim
.
Value
The specified efficiency value depending on the ofv_calc_type.
The attribute "description" tells you how the calculation was made
attr(return_vale,"description")
See also
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()