Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM).
Source:R/ed_mftot.R
ed_mftot.Rd
Compute the expectation of the FIM given the model, parameters, distributions of parameter uncertainty, design and methods defined in the PopED database.
Usage
ed_mftot(
model_switch,
groupsize,
ni,
xtoptn,
xoptn,
aoptn,
bpopdescr,
ddescr,
covd,
sigma,
docc,
poped.db,
calc_fim = TRUE,
...
)
Arguments
- model_switch
A matrix that is the same size as xt, specifying which model each sample belongs to.
- groupsize
A vector of the number of individuals in each group.
- ni
A vector of the number of samples in each group.
- xtoptn
The xtoptn value
- xoptn
The xoptn
- aoptn
The aoptn value
- bpopdescr
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
column 1 the type of the distribution for E-family designs (0 = Fixed, 1 = Normal, 2 = Uniform, 3 = User Defined Distribution, 4 = lognormal and 5 = truncated normal)
column 2 defines the mean.
column 3 defines the variance of the distribution (or length of uniform distribution).
- ddescr
Matrix defining the diagonals of the IIV (same logic as for the
bpopdescr
).- covd
Column major vector defining the covariances of the IIV variances. That is, from your full IIV matrix
covd <- IIV[lower.tri(IIV)]
.- sigma
Matrix defining the variances can covariances of the residual variability terms of the model. can also just supply the diagonal parameter values (variances) as a
c()
.- docc
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop.
- poped.db
A PopED database.
- calc_fim
Should the FIM be calculated or should we just use the user defined ed_penalty_pointer.
- ...
Other arguments passed to the function.
See also
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
,
ofv_fim()
Other E-family:
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
evaluate.e.ofv.fim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samoples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V *
#> xt) - exp(-KA * xt))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557079188b38>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
# Adding 10% log-normal Uncertainty to fixed effects (not Favail)
bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1)
bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution
bpop_vals,
ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value
bpop_vals_ed_ln["Favail",] <- c(0,1,0)
bpop_vals_ed_ln
#> bpop_vals
#> CL 4 0.15 0.000225
#> V 4 8.00 0.640000
#> KA 4 1.00 0.010000
#> Favail 0 1.00 0.000000
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=bpop_vals_ed_ln,
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70,
mina=0,
maxa=100)
############# END ###################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
# very few samples
poped.db$settings$ED_samp_size=10
ed_mftot(model_switch=poped.db$design$model_switch,
groupsize=poped.db$design$groupsize,
ni=poped.db$design$ni,
xtoptn=poped.db$design$xt,
xoptn=poped.db$design$x,
aoptn=poped.db$design$a,
bpopdescr=poped.db$parameters$bpop,
ddescr=poped.db$parameters$d,
covd=poped.db$parameters$covd,
sigma=poped.db$parameters$sigma,
docc=poped.db$parameters$docc,
poped.db)["ED_ofv"]
#> $ED_ofv
#> [1] 55.36459
#>