Skip to contents

optim_LS performs sequential grid search optimization of an arbitrary function with respect to each of the parameters to be optimized over. The function works for both discrete and continuous optimization parameters and allows for box-constraints (by using the upper and lower function arguments) or sets of allowed values (by using the allowed_values function argument) for all parameters, or on a parameter per parameter basis.

Usage

optim_LS(
  par,
  fn,
  lower = NULL,
  upper = NULL,
  allowed_values = NULL,
  line_length = 50,
  trace = TRUE,
  maximize = F,
  parallel = F,
  parallel_type = NULL,
  num_cores = NULL,
  mrgsolve_model = NULL,
  seed = round(runif(1, 0, 1e+07)),
  allow_replicates = TRUE,
  replicates_index = seq(1, length(par)),
  ofv_initial = NULL,
  closed_bounds = TRUE,
  ...
)

Arguments

par

A vector of initial values for the parameters to be optimized over.

fn

A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.

lower

Lower bounds on the parameters. A vector.

upper

Upper bounds on the parameters. A vector.

allowed_values

A list containing allowed values for each parameter list(par1=c(2,3,4,5,6),par2=c(5,6,7,8)). A vector containing allowed values for all parameters is also allowed c(2,3,4,5,6).

line_length

The number of different parameter values per parameter to evaluate. The values are selected as an evenly spaced grid between the upper and lower bounds.

trace

Should the algorithm output results intermittently.

maximize

Should the function be maximized? Default is to minimize.

parallel

Should we use parallel computations?

parallel_type

Which type of parallelization should be used? Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on Linux-like systems. By default this is chosen for you depending on your operating system. See start_parallel.

num_cores

The number of cores to use in the parallelization. By default is set to the number output from parallel::detectCores(). See start_parallel.

mrgsolve_model

If the computations require a mrgsolve model and you are using the "snow" method then you need to specify the name of the model object created by mread or mcode.

seed

The random seed to use in the algorithm,

allow_replicates

Should the algorithm allow parameters to have the same value?

replicates_index

A vector, the same length as the parameters. If two values are the same in this vector then the parameters may not assume the same value in the optimization.

ofv_initial

An initial objective function value (OFV). If not NULL then the initial design is not evaluated and the OFV value is assumed to be this number.

closed_bounds

Are the upper and lower limits open (boundaries not allowed) or closed (boundaries allowed) bounds?

...

Additional arguments passed to fn and start_parallel.

References

  1. M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.

  2. J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.

Examples

# "wild" function 
fw <- function(x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80

# Global minimum of 67.47 at about -15.81515
(fw_min <- fw(-15.81515))
#> [1] 67.46773

if (interactive()){  
  #plot of the function
  require(graphics)
  plot(fw, -50, 50, n = 10000, main = "Minimizing 'wild function'")
  
  # Known minimum
  points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5)
} 

# optimization with fewer function evaluations 
# compared to SANN: see examples in '?optim'
res1 <- optim_LS(50, fw,lower = -50, upper=50, line_length = 10000)
#> 
#>    Initial parameters: 50 
#>    Initial OFV: 159.0012 
#> 
#>    Searching parameter 1 
#>      Changed from 50 to -15.8166 ; OFV = 67.485 
#> 
#>    Elapsed time: 0.041 seconds.
#> 
#>    Final OFV =  67.48502 
#>    Parameters: -15.81658 
#> 

if (interactive()){ 
  require(graphics)
  plot(fw, -20, 0, n = 10000, main = "Minimizing 'wild function'")
  
  # Known minimum
  points(-15.81515, fw_min, pch = 21, col = "red", cex = 1.5)
  
  #plot of the optimization
  points(res1$par, res1$ofv, pch = 16, col = "green", cex = 1)
} 

# Upper and lower bounds and line_length should be considered carefully
res2 <- optim_LS(50, fw, lower=-Inf,upper=Inf,line_length = 10000)
#> 
#>    Initial parameters: 50 
#>    Initial OFV: 159.0012 
#> 
#>    Searching parameter 1 
#>      Changed from 50 to -5.0055 ; OFV = 69.8766 
#> 
#>    Elapsed time: 0.032 seconds.
#> 
#>    Final OFV =  69.87659 
#>    Parameters: -5.005501 
#> 

# Only integer values allowed
res_int <- optim_LS(50, fw, allowed_values = seq(-50,50,by=1))
#> 
#>    Initial parameters: 50 
#>    Initial OFV: 159.0012 
#> 
#>    Searching parameter 1 
#>      Changed from 50 to -17 ; OFV = 68.5368 
#> 
#>    Elapsed time: 0.001 seconds.
#> 
#>    Final OFV =  68.53679 
#>    Parameters: -17 
#> 


# Rosenbrock Banana function
# f(x, y) = (a-x)^2 + b*(y-x^2)^2
# global minimum at (x, y)=(a, a^2), where f(x, y)=0. 
# Usually a = 1 and b = 100 so x=1 and y=1
if (interactive()){ 
  fr <- function(x,a=1,b=100) {   
    x1 <- x[1]
    x2 <- x[2]
    b*(x2 - x1*x1)^2 + (a - x1)^2
  }
  
  res3 <- optim_LS(c(-1.2,1), fr,lower = -5, upper = 5, line_length = 1000)

  # plot the surface
  x <- seq(-50, 50, length= 30)
  y <- x
  f <- function(x,y){apply(cbind(x,y),1,fr)}
  z <- outer(x, y, f)
  persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue", ticktype="detailed") -> res
  points(trans3d(1, 1, 0, pmat = res), col = 2, pch = 16,cex=2)
  points(trans3d(res3$par[1], res3$par[1], res3$ofv, pmat = res), col = "green", pch = 16,cex=1.5)
}

# box constraints
flb <- function(x){
  p <- length(x) 
  sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) 
}

## 25-dimensional box constrained
if (interactive()){ 
  optim(rep(3, 25), flb,lower = rep(2, 25), upper = rep(4, 25),method = "L-BFGS-B") 
}
res_box <- optim_LS(rep(3, 25), flb,
                    lower = rep(2, 25), 
                    upper = rep(4, 25),
                    line_length = 1000) 
#> 
#>    Initial parameters: 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
#>    Initial OFV: 3460 
#> 
#>    Searching parameter 7 
#>      Changed from 3 to 2.14414 ; OFV = 3370.22 
#>    Searching parameter 16 
#>      Changed from 3 to 2.14414 ; OFV = 3280.43 
#>    Searching parameter 2 
#>      Changed from 3 to 2.14414 ; OFV = 3190.65 
#>    Searching parameter 25 
#>      Changed from 3 to 4 ; OFV = 3146.65 
#>    Searching parameter 20 
#>      Changed from 3 to 2.14414 ; OFV = 3056.87 
#>    Searching parameter 11 
#>      Changed from 3 to 2.14414 ; OFV = 2967.09 
#>    Searching parameter 1 
#>      Changed from 3 to 2 ; OFV = 2789.85 
#>    Searching parameter 13 
#>      Changed from 3 to 2.14414 ; OFV = 2700.07 
#>    Searching parameter 18 
#>      Changed from 3 to 2.14414 ; OFV = 2610.29 
#>    Searching parameter 9 
#>      Changed from 3 to 2.14414 ; OFV = 2520.5 
#>    Searching parameter 21 
#>      Changed from 3 to 2 ; OFV = 2397.28 
#>    Searching parameter 4 
#>      Changed from 3 to 2.14414 ; OFV = 2307.5 
#>    Searching parameter 5 
#>      Changed from 3 to 2 ; OFV = 2184.28 
#>    Searching parameter 8 
#>      Changed from 3 to 2 ; OFV = 2026.82 
#>    Searching parameter 12 
#>      Changed from 3 to 2 ; OFV = 1869.37 
#>    Searching parameter 19 
#>      Changed from 3 to 2 ; OFV = 1711.91 
#>    Searching parameter 15 
#>      Changed from 3 to 2 ; OFV = 1589.68 
#>    Searching parameter 10 
#>      Changed from 3 to 2 ; OFV = 1432.22 
#>    Searching parameter 22 
#>      Changed from 3 to 2 ; OFV = 1304.22 
#>    Searching parameter 3 
#>      Changed from 3 to 2 ; OFV = 1146.77 
#>    Searching parameter 6 
#>      Changed from 3 to 2 ; OFV = 984.533 
#>    Searching parameter 17 
#>      Changed from 3 to 2 ; OFV = 827.077 
#>    Searching parameter 23 
#>      Changed from 3 to 2 ; OFV = 699.077 
#>    Searching parameter 24 
#>      Changed from 3 to 2.10811 ; OFV = 610.183 
#>    Searching parameter 14 
#>      Changed from 3 to 2 ; OFV = 446.962 
#> 
#>    Elapsed time: 0.152 seconds.
#> 
#>    Final OFV =  446.9622 
#>    Parameters: 2 2.144144 2 2.144144 2 2 2.144144 2 2.144144 2 2.144144 2 2.144144 2 2 2.144144 2 2.144144 2 2.144144 2 2 2 2.108108 4 
#> 

# one-dimensional function
if (interactive()){ 
  f <- function(x)  abs(x)+cos(x)
  res5 <- optim_LS(-20,f,lower=-20, upper=20, line_length = 500)
  
  curve(f, -20, 20)
  abline(v = res5$par, lty = 4,col="green")
}  

# one-dimensional function
f <- function(x)  (x^2+x)*cos(x) # -10 < x < 10
res_max <- optim_LS(0,f,lower=-10, upper=10,maximize=TRUE,line_length = 1000) 
#> 
#>    Initial parameters: 0 
#>    Initial OFV: 0 
#> 
#>    Searching parameter 1 
#>      Changed from 0 to 6.55656 ; OFV = 47.7052 
#> 
#>    Elapsed time: 0.003 seconds.
#> 
#>    Final OFV =  47.7052 
#>    Parameters: 6.556557 
#> 

if (interactive()){ 
  res_min <- optim_LS(0,f,lower=-10, upper=10, line_length = 1000) 
  
  curve(f, -10, 10)
  abline(v = res_min$par, lty = 4,col="green")
  abline(v = res_max$par, lty = 4,col="red")
}


# two-dimensional Rastrigin function
#It has a global minimum at f(x) = f(0) = 0.
if (interactive()){ 
  Rastrigin <- function(x1, x2){
    20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
  }
  
  
  x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)
  z <- outer(x1, x2, Rastrigin)
  
  res6 <- optim_LS(c(-4,4),function(x) Rastrigin(x[1], x[2]),
                   lower=-5.12, upper=5.12, line_length = 1000)
  
  # color scale
  nrz <- nrow(z)
  ncz <- ncol(z)
  jet.colors <-
    colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
                       "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
  # Generate the desired number of colors from this palette
  nbcol <- 100
  color <- jet.colors(nbcol)
  # Compute the z-value at the facet centres
  zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
  # Recode facet z-values into color indices
  facetcol <- cut(zfacet, nbcol)
  persp(x1, x2, z, col = color[facetcol], phi = 30, theta = 30)
  filled.contour(x1, x2, z, color.palette = jet.colors)
}


## Parallel computation  
## works better when each evaluation takes longer
## here we have added extra time to the computations
## just to show that it works
if (interactive()){ 
  res7 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])},
                   lower=-5.12, upper=5.12, line_length = 200)
  res8 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])},
                   lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE)
  res9 <- optim_LS(c(-4,4),function(x){Sys.sleep(0.01); Rastrigin(x[1], x[2])},
                   lower=-5.12, upper=5.12, line_length = 200, parallel = TRUE, 
                   parallel_type = "snow")
}