This is the implementation of a Broyden Fletcher Goldfarb Shanno (BFGS) method for nonlinear minimization with box constraints.
Usage
bfgsb_min(f_name, f_options, x0, l, u, options = list())
Arguments
- f_name
A function name (as a text string) that returns an objective function and the gradient of that objective function, in that order. See
calc_ofv_and_grad
as used inDoptim
.- f_options
Options for the f_name argument.
- x0
the initial values to optimize
- l
the lower bounds
- u
the upper bounds
- options
a list of additional settings arguments
See also
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V *
#> xt) - exp(-KA * xt))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557079188b38>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
if (FALSE) { # \dontrun{
# BFGS search, DOSE and sample time optimization
bfgs.output <- poped_optimize(poped.db,opt_xt=1,opt_a=0,
bUseRandomSearch= 0,
bUseStochasticGradient = 0,
bUseBFGSMinimizer = 1,
bUseLineSearch = 0)
f_name <- 'calc_ofv_and_grad'
gen_des <- downsizing_general_design(poped.db)
aa <- 0*poped.db$settings$cfaa*matrix(1,poped.db$design$m,size(poped.db$design$a,2))
axt=1*poped.db$settings$cfaxt*matrix(1,poped.db$design$m,max(poped.db$design_space$maxni))
f_options_1 <- list(gen_des$x,1, 0, gen_des$model_switch,
aa=aa,axt=axt,poped.db$design$groupsize,
gen_des$ni,
gen_des$xt,gen_des$x,gen_des$a,gen_des$bpop[,2,drop=F],
getfulld(gen_des$d[,2,drop=F],poped.db$parameters$covd),
poped.db$parameters$sigma,
getfulld(poped.db$parameters$docc[,2,drop=F],
poped.db$parameters$covdocc),poped.db)
options=list('factr'=poped.db$settings$BFGSConvergenceCriteriaMinStep,
#'factr'=0.01,
'pgtol'=poped.db$settings$BFGSProjectedGradientTol,
'ftol'=poped.db$settings$BFGSTolerancef,
'gtol'=poped.db$settings$BFGSToleranceg,
'xtol'=poped.db$settings$BFGSTolerancex)
x_k=t(gen_des$xt)
lb=t(gen_des$minxt)
ub=t(gen_des$maxxt)
output <- bfgsb_min(f_name,f_options, x_k,lb,ub,options)
} # }