Compute the autofocus portion of the stochastic gradient routine
Source:R/Doptim.R
calc_autofocus.Rd
Compute the autofocus portion of the stochastic gradient routine
Usage
calc_autofocus(
m,
ni_var,
dmf,
varopt,
varopto,
maxvar,
minvar,
gradvar,
normgvar,
avar,
model_switch,
groupsize,
xtopt,
xopt,
aopt,
ni,
bpop,
d,
sigma,
docc,
poped.db
)
Arguments
- m
Number of groups in the study. Each individual in a group will have the same design.
- ni_var
The ni_var.
- dmf
The initial OFV. If set to zero then it is computed.
- varopt
The varopt.
- varopto
The varopto.
- maxvar
The maxvar.
- minvar
The minvar.
- gradvar
The gradvar.
- normgvar
The normgvar.
- avar
The avar.
- model_switch
A matrix that is the same size as xt, specifying which model each sample belongs to.
- groupsize
A vector of the number of individuals in each group.
- xtopt
The optimal sampling times matrix.
- xopt
The optimal discrete design variables matrix.
- aopt
The optimal continuous design variables matrix.
- ni
A vector of the number of samples in each group.
- bpop
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
column 1 the type of the distribution for E-family designs (0 = Fixed, 1 = Normal, 2 = Uniform, 3 = User Defined Distribution, 4 = lognormal and 5 = truncated normal)
column 2 defines the mean.
column 3 defines the variance of the distribution (or length of uniform distribution).
Can also just supply the parameter values as a vector
c()
if no uncertainty around the parameter value is to be used. The parameter order of 'bpop' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'bpop' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`.- d
Matrix defining the diagonals of the IIV (same logic as for the fixed effects matrix bpop to define uncertainty). One can also just supply the parameter values as a
c()
. The parameter order of 'd' is defined in the 'fg_fun' or 'fg_file'. If you use named arguments in 'd' then the order of this vector can be rearranged to match the 'fg_fun' or 'fg_file'. See `reorder_parameter_vectors`.- sigma
Matrix defining the variances can covariances of the residual variability terms of the model. can also just supply the diagonal parameter values (variances) as a
c()
.- docc
Matrix defining the IOV, the IOV variances and the IOV distribution as for d and bpop.
- poped.db
A PopED database.
See also
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V *
#> xt) - exp(-KA * xt))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557079188b38>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
if (FALSE) { # \dontrun{
# Stochastic gradient search, DOSE and sample time optimization
sg.output <- poped_optimize(poped.db,opt_xt=1,opt_a=1,
bUseRandomSearch= 0,
bUseStochasticGradient = 1,
bUseBFGSMinimizer = 0,
bUseLineSearch = 0,
sgit=20)
} # }