The function performs a grid search sequentially along design variables. The grid is defined by ls_step_size.
Usage
a_line_search(
poped.db,
out_file = "",
bED = FALSE,
diff = 0,
fmf_initial = 0,
dmf_initial = 0,
opt_xt = poped.db$settings$optsw[2],
opt_a = poped.db$settings$optsw[4],
opt_x = poped.db$settings$optsw[3],
opt_samps = poped.db$settings$optsw[1],
opt_inds = poped.db$settings$optsw[5],
ls_step_size = poped.db$settings$ls_step_size
)
Arguments
- poped.db
A PopED database.
- out_file
The output file to write to.
- bED
If the algorithm should use E-family methods. Logical.
- diff
The OFV difference that is deemed significant for changing a design. If, by changing a design variable the difference between the new and old OFV is less than
diff
the change is not made.- fmf_initial
The initial value of the FIM. If
0
then the FIM is calculated from poped.db.- dmf_initial
The initial value of the objective function value (OFV). If
0
then the OFV is calculated from poped.db.- opt_xt
Should the sample times be optimized?
- opt_a
Should the continuous design variables be optimized?
- opt_x
Should the discrete design variables be optimized?
- opt_samps
Are the number of sample times per group being optimized?
- opt_inds
Are the number of individuals per group being optimized?
- ls_step_size
Number of grid points in the line search.
Value
A list containing:
- fmf
The FIM.
- dmf
The final value of the objective function value.
- best_changed
If the algorithm has found a better design than the starting design.
- xt
A matrix of sample times. Each row is a vector of sample times for a group.
- x
A matrix for the discrete design variables. Each row is a group.
- a
A matrix of covariates. Each row is a group.
- poped.db
A PopED database.
See also
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V *
#> xt) - exp(-KA * xt))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557079188b38>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
# very sparse grid to evaluate (4 points for each design valiable)
output <- a_line_search(poped.db, opt_xt=TRUE, opt_a=TRUE, ls_step_size=4)
#> *****************************
#> Line Search
#>
#> Searching xt1 on group 1
#> group 1 -- xt[1] changed from 0.5 to 0.01
#> OFV(MF) changed from 55.3964 to 55.7394
#> group 1 -- xt[1] changed from 0.01 to 90.0025
#> OFV(MF) changed from 55.7394 to 55.7436
#> group 1 -- xt[1] changed from 90.0025 to 120
#> OFV(MF) changed from 55.7436 to 55.8023
#> Searching xt6 on group 1
#> group 1 -- xt[6] changed from 36 to 0.01
#> OFV(MF) changed from 55.8023 to 55.8666
#> group 1 -- xt[6] changed from 0.01 to 90.0025
#> OFV(MF) changed from 55.8666 to 55.9043
#> group 1 -- xt[6] changed from 90.0025 to 120
#> OFV(MF) changed from 55.9043 to 55.9321
#> Searching xt2 on group 1
#> Searching xt3 on group 1
#> Searching xt7 on group 1
#> group 1 -- xt[7] changed from 72 to 30.0075
#> OFV(MF) changed from 55.9321 to 55.9484
#> group 1 -- xt[7] changed from 30.0075 to 90.0025
#> OFV(MF) changed from 55.9484 to 55.9661
#> Searching xt8 on group 1
#> Searching xt5 on group 1
#> Searching xt4 on group 1
#> OFV(MF): 55.9661
#>
#> Best value for OFV(MF) = 55.9661
#>
#> Best value for xt:
#> Group 1: 1 2 6 24 90 120 120 120
#>
#> Searching a1 on individual/group 1
#> group 1 -- a[1] changed from 70 to 75.0025
#> OFV(MF) changed from 55.9661 to 56.1502
#> group 1 -- a[1] changed from 75.0025 to 100
#> OFV(MF) changed from 56.1502 to 56.7067
#> OFV(MF): 56.7067
#> Best value for OFV(MF) = 56.7067
#>
#> Best value for a:
#> Group 1: 100 [0.01,100]
#>
#>
#> Line search run time: 0.32 seconds
#> ***************************
#>
if (FALSE) { # \dontrun{
# longer run time
output <- a_line_search(poped.db,opt_xt=TRUE)
# output to a text file
output <- a_line_search(poped.db,opt_xt=TRUE,out_file="tmp.txt")
} # }