Optimize a design defined in a PopED database using the objective function described in the database (or in the arguments to this function). The function works for both discrete and continuous optimization variables.
poped_optim( poped.db, opt_xt = poped.db$settings$optsw[2], opt_a = poped.db$settings$optsw[4], opt_x = poped.db$settings$optsw[3], opt_samps = poped.db$settings$optsw[1], opt_inds = poped.db$settings$optsw[5], method = c("ARS", "BFGS", "LS"), control = list(), trace = TRUE, fim.calc.type = poped.db$settings$iFIMCalculationType, ofv_calc_type = poped.db$settings$ofv_calc_type, approx_type = poped.db$settings$iApproximationMethod, d_switch = poped.db$settings$d_switch, ED_samp_size = poped.db$settings$ED_samp_size, bLHS = poped.db$settings$bLHS, use_laplace = poped.db$settings$iEDCalculationType, out_file = "", parallel = F, parallel_type = NULL, num_cores = NULL, mrgsolve_model = NULL, loop_methods = ifelse(length(method) > 1, TRUE, FALSE), iter_max = 10, stop_crit_eff = 1.001, stop_crit_diff = NULL, stop_crit_rel = NULL, ofv_fun = poped.db$settings$ofv_fun, maximize = T, allow_replicates = TRUE, allow_replicates_xt = TRUE, allow_replicates_a = TRUE, ... )
poped.db | A PopED database. |
---|---|
opt_xt | Should the sample times be optimized? |
opt_a | Should the continuous design variables be optimized? |
opt_x | Should the discrete design variables be optimized? |
opt_samps | Are the number of sample times per group being optimized? |
opt_inds | Are the number of individuals per group being optimized? |
method | A vector of optimization methods to use in a sequential
fashion. Options are |
control | Contains control arguments for each method specified. |
trace | Should the algorithm output results intermittently. |
fim.calc.type | The method used for calculating the FIM. Potential values:
|
ofv_calc_type | OFV calculation type for FIM
|
approx_type | Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI. |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
ED_samp_size | Sample size for E-family sampling |
bLHS | How to sample from distributions in E-family calculations. 0=Random Sampling, 1=LatinHyperCube -- |
use_laplace | Should the Laplace method be used in calculating the expectation of the OFV? |
out_file | Save output from the optimization to a file. |
parallel | Should we use parallel computations? |
parallel_type | Which type of parallelization should be used?
Can be "snow" or "multicore". "snow" works on Linux-like systems & Windows. "multicore" works only on
Linux-like systems. By default this is chosen for you depending on your operating system.
See |
num_cores | The number of cores to use in the parallelization. By default is set to the number
output from
|
mrgsolve_model | If the computations require a mrgsolve model and you
are using the "snow" method then you need to specify the name of the model
object created by |
loop_methods | Should the optimization methods be looped for
|
iter_max | If line search is used then the algorithm tests if line
search (always run at the end of the optimization iteration) changes the
design in any way. If not, the algorithm stops. If yes, then a new
iteration is run unless |
stop_crit_eff | If |
stop_crit_diff | If |
stop_crit_rel | If |
ofv_fun | User defined function used to compute the objective function. The function must have a poped database object as its first argument and have "..." in its argument list. Can be referenced as a function or as a file name where the function defined in the file has the same name as the file. e.g. "cost.txt" has a function named "cost" in it. |
maximize | Should the objective function be maximized or minimized? |
allow_replicates | Should the algorithm allow optimized design components to have the same value? If FALSE then
all discrete optimizations will not allow replicates within variable types
(equivalent to |
allow_replicates_xt | Should the algorithm allow optimized |
allow_replicates_a | Should the algorithm allow optimized |
... | arguments passed to other functions. |
This function takes information from the PopED database supplied as an argument. The PopED database supplies information about the the model, parameters, design and methods to use. Some of the arguments coming from the PopED database can be overwritten; if they are supplied then they are used instead of the arguments from the PopED database.
If more than one optimization method is
specified then the methods are run in series. If loop_methods=TRUE
then the series of optimization methods will be run for iter_max
iterations, or until the efficiency of the design after the current series
(compared to the start of the series) is less than stop_crit_eff
.
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
library(PopED) ############# START ################# ## Create PopED database ## (warfarin model for optimization) ##################################### ## Warfarin example from software comparison in: ## Nyberg et al., "Methods and software tools for design evaluation ## for population pharmacokinetics-pharmacodynamics studies", ## Br. J. Clin. Pharm., 2014. ## Optimization using an additive + proportional reidual error ## to avoid sample times at very low concentrations (time 0 or very late samples). ## find the parameters that are needed to define from the structural model ff.PK.1.comp.oral.sd.CL#> function (model_switch, xt, parameters, poped.db) #> { #> with(as.list(parameters), { #> y = xt #> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V * #> xt) - exp(-KA * xt)) #> return(list(y = y, poped.db = poped.db)) #> }) #> } #> <bytecode: 0x7fe20a979808> #> <environment: namespace:PopED>## -- parameter definition function ## -- names match parameters in function ff sfg <- function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) } ## -- Define initial design and design space poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) ############# END ################### ## Create PopED database ## (warfarin model for optimization) ##################################### ############## # D-family Optimization ############## # below are a number of ways to optimize the problem # ARS+BFGS+LS optimization of dose # optimization with just a few iterations # only to check that things are working out_1 <- poped_optim(poped.db,opt_a =TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1)#> =============================================================================== #> Initial design evaluation #> #> Initial OFV = 55.3964 #> #> Initial design #> expected relative standard error #> (%RSE, rounded to nearest integer) #> Parameter Values RSE_0 #> CL 0.15 5 #> V 8 3 #> KA 1 14 #> d_CL 0.07 30 #> d_V 0.02 37 #> d_KA 0.6 27 #> sig_prop 0.01 32 #> sig_add 0.25 26 #> #> ============================================================================== #> Optimization of design parameters #> #> * Optimize Covariates #> #> ************* Iteration 1 for all optimization methods*********************** #> #> ******************************************* #> Running Adaptive Random Search Optimization #> ******************************************* #> Initial OFV = 55.3964 #> #> Total iterations: 2 #> Elapsed time: 0.03 seconds. #> #> Final OFV = 55.39645 #> Parameters: 70 #> #> ******************************************* #> Running BFGS Optimization #> ******************************************* #> initial value -55.396450 #> final value -55.766379 #> stopped after 2 iterations #> #> ******************************************* #> Running Line Search Optimization #> ******************************************* #> #> Initial parameters: 83.20112 #> Initial OFV: 55.76638 #> #> Searching parameter 1 #> Changed from 83.2011 to 100 ; OFV = 56.032 #> #> Elapsed time: 0.024 seconds. #> #> Final OFV = 56.03204 #> Parameters: 100 #> #> ******************************************* #> Stopping criteria testing #> (Compare between start of iteration and end of iteration) #> ******************************************* #> Difference in OFV: 0.636 #> Relative difference in OFV: 1.15% #> Efficiency: #> ((exp(ofv_final) / exp(ofv_init))^(1/n_parameters)) = 1.0827 #> #> Efficiency stopping criteria: #> Is (1.0827 <= 1.001)? No. #> Stopping criteria NOT achieved. #> #> Stopping criteria NOT achieved. #> #> =============================================================================== #> FINAL RESULTS #> #> Optimized Covariates: #> Group 1: 100 #> #> OFV = 56.032 #> #> Efficiency: #> ((exp(ofv_final) / exp(ofv_init))^(1/n_parameters)) = 1.0827 #> #> Expected relative standard error #> (%RSE, rounded to nearest integer): #> Parameter Values RSE_0 RSE #> CL 0.15 5 5 #> V 8 3 3 #> KA 1 14 14 #> d_CL 0.07 30 28 #> d_V 0.02 37 34 #> d_KA 0.6 27 26 #> sig_prop 0.01 32 23 #> sig_add 0.25 26 30 #> #> Total running time: 0.524 seconds# cost function # PRED at 120 hours crit_fcn <- function(poped.db,...){ pred_df <- model_prediction(poped.db) return(pred_df[pred_df$Time==120,"PRED"]) } # maximize cost function out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2)#> =============================================================================== #> Initial design evaluation #> #> Initial OFV = 0.939866 #> #> Initial design #> expected relative standard error #> (%RSE, rounded to nearest integer) #> Parameter Values RSE_0 #> CL 0.15 5 #> V 8 3 #> KA 1 14 #> d_CL 0.07 30 #> d_V 0.02 37 #> d_KA 0.6 27 #> sig_prop 0.01 32 #> sig_add 0.25 26 #> #> ============================================================================== #> Optimization of design parameters #> #> * Optimize Covariates #> #> ************* Iteration 1 for all optimization methods*********************** #> #> ******************************************* #> Running Adaptive Random Search Optimization #> ******************************************* #> Initial OFV = 0.939866 #> #> Total iterations: 2 #> Elapsed time: 0.012 seconds. #> #> Final OFV = 1.244413 #> Parameters: 92.68227 #> #> ******************************************* #> Running BFGS Optimization #> ******************************************* #> initial value -1.244413 #> final value -1.252389 #> stopped after 2 iterations #> #> ******************************************* #> Running Line Search Optimization #> ******************************************* #> #> Initial parameters: 93.27637 #> Initial OFV: 1.252389 #> #> Searching parameter 1 #> Changed from 93.2764 to 100 ; OFV = 1.34267 #> #> Elapsed time: 0.017 seconds. #> #> Final OFV = 1.342665 #> Parameters: 100 #> #> ******************************************* #> Stopping criteria testing #> (Compare between start of iteration and end of iteration) #> ******************************************* #> Difference in OFV: 0.403 #> Relative difference in OFV: 42.9% #> Efficiency: #> (ofv_final / ofv_init) = 1.4286 #> #> Efficiency stopping criteria: #> Is (1.4286 <= 1.001)? No. #> Stopping criteria NOT achieved. #> #> Stopping criteria NOT achieved. #> #> ************* Iteration 2 for all optimization methods*********************** #> #> ******************************************* #> Running Adaptive Random Search Optimization #> ******************************************* #> Initial OFV = 1.34267 #> #> Total iterations: 2 #> Elapsed time: 0.008 seconds. #> #> Final OFV = 1.342665 #> Parameters: 100 #> #> ******************************************* #> Running BFGS Optimization #> ******************************************* #> initial value -1.342665 #> final value -1.342665 #> converged #> #> ******************************************* #> Running Line Search Optimization #> ******************************************* #> #> Initial parameters: 100 #> Initial OFV: 1.342665 #> #> Searching parameter 1 #> Changed from 100 to 100 ; OFV = 1.34267 #> #> Elapsed time: 0.018 seconds. #> #> Final OFV = 1.342665 #> Parameters: 100 #> #> ******************************************* #> Stopping criteria testing #> (Compare between start of iteration and end of iteration) #> ******************************************* #> Difference in OFV: 0 #> Relative difference in OFV: 0% #> Efficiency: #> (ofv_final / ofv_init) = 1 #> #> Efficiency stopping criteria: #> Is (1 <= 1.001)? Yes. #> Stopping criteria achieved. #> #> Stopping criteria achieved. #> #> =============================================================================== #> FINAL RESULTS #> #> Optimized Covariates: #> Group 1: 100 #> #> OFV = 1.34267 #> #> Efficiency: #> (ofv_final / ofv_init) = 1.4286 #> #> Expected relative standard error #> (%RSE, rounded to nearest integer): #> Parameter Values RSE_0 RSE #> CL 0.15 5 5 #> V 8 3 3 #> KA 1 14 14 #> d_CL 0.07 30 28 #> d_V 0.02 37 34 #> d_KA 0.6 27 26 #> sig_prop 0.01 32 23 #> sig_add 0.25 26 30 #> #> Total running time: 0.582 seconds# minimize the cost function out_3 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 2, maximize = FALSE, evaluate_fim = FALSE)#> =============================================================================== #> Initial design evaluation #> #> Initial OFV = 0.939866 #> ============================================================================== #> Optimization of design parameters #> #> * Optimize Covariates #> #> ************* Iteration 1 for all optimization methods*********************** #> #> ******************************************* #> Running Adaptive Random Search Optimization #> ******************************************* #> Initial OFV = 0.939866 #> #> Total iterations: 2 #> Elapsed time: 0.007 seconds. #> #> Final OFV = 0.833124 #> Parameters: 62.05002 #> #> ******************************************* #> Running BFGS Optimization #> ******************************************* #> initial value 0.833124 #> final value 0.730106 #> stopped after 2 iterations #> #> ******************************************* #> Running Line Search Optimization #> ******************************************* #> #> Initial parameters: 54.37735 #> Initial OFV: 0.7301058 #> #> Searching parameter 1 #> Changed from 54.3773 to 0.01 ; OFV = 0.000134267 #> #> Elapsed time: 0.023 seconds. #> #> Final OFV = 0.0001342665 #> Parameters: 0.01 #> #> ******************************************* #> Stopping criteria testing #> (Compare between start of iteration and end of iteration) #> ******************************************* #> Difference in OFV: -0.94 #> Relative difference in OFV: -100% #> Efficiency: #> (ofv_final / ofv_init) = 0.00014286 #> #> Efficiency stopping criteria: #> Is (0.00014286 >= 0.999)? No. #> Stopping criteria NOT achieved. #> #> Stopping criteria NOT achieved. #> #> ************* Iteration 2 for all optimization methods*********************** #> #> ******************************************* #> Running Adaptive Random Search Optimization #> ******************************************* #> Initial OFV = 0.000134267 #> #> Total iterations: 2 #> Elapsed time: 0.009 seconds. #> #> Final OFV = 0.0001342665 #> Parameters: 0.01 #> #> ******************************************* #> Running BFGS Optimization #> ******************************************* #> initial value 0.000134 #> final value 0.000134 #> converged #> #> ******************************************* #> Running Line Search Optimization #> ******************************************* #> #> Initial parameters: 0.01000001 #> Initial OFV: 0.0001342667 #> #> Searching parameter 1 #> Changed from 0.01 to 0.01 ; OFV = 0.000134267 #> #> Elapsed time: 0.014 seconds. #> #> Final OFV = 0.0001342665 #> Parameters: 0.01 #> #> ******************************************* #> Stopping criteria testing #> (Compare between start of iteration and end of iteration) #> ******************************************* #> Difference in OFV: 0 #> Relative difference in OFV: 0% #> Efficiency: #> (ofv_final / ofv_init) = 1 #> #> Efficiency stopping criteria: #> Is (1 >= 0.999)? Yes. #> Stopping criteria achieved. #> #> Stopping criteria achieved. #> #> =============================================================================== #> FINAL RESULTS #> #> Optimized Covariates: #> Group 1: 0.01 #> #> OFV = 0.000134267 #> #> Efficiency: #> (ofv_final / ofv_init) = 0.00014286 #> #> Total running time: 0.669 secondsif (FALSE) { # RS+BFGS+LS optimization of sample times # (longer run time than above but more likely to reach a maximum) output <- poped_optim(poped.db,opt_xt=T,parallel = TRUE) get_rse(output$FIM,output$poped.db) plot_model_prediction(output$poped.db) # optimization with only integer times allowed poped.db.2 <- poped.db poped.db.2$design_space$xt_space <- matrix(list(seq(1,120)),1,8) output_2 <- poped_optim(poped.db.2,opt_xt=T,parallel = TRUE) get_rse(output_2$FIM,output_2$poped.db) plot_model_prediction(output_2$poped.db) # Examine efficiency of sampling windows plot_efficiency_of_windows(output_2$poped.db,xt_windows=0.5) plot_efficiency_of_windows(output_2$poped.db,xt_windows=1) # Adaptive Random Search (ARS, just a few samples here) rs.output <- poped_optim(poped.db,opt_xt=T,method = "ARS", control = list(ARS=list(iter=5))) get_rse(rs.output$FIM,rs.output$poped.db) # line search, DOSE and sample time optimization ls.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "LS", control = list(LS=list(line_length=5))) # Adaptive random search, # DOSE and sample time optimization ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", control = list(ARS=list(iter=5))) # BFGS gradient search from the stats::optim() function, # DOSE and sample time optimization bfgs.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "BFGS", control = list(BFGS=list(maxit=5))) # genetic algorithm from the GA::ga() function, # DOSE and sample time optimization ga.output <- poped_optim(poped.db,opt_xt=T,opt_a=F,method = "GA",parallel=T) # cost function with GA # maximize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA")) # cost function with GA # minimize out_2 <- poped_optim(poped.db,opt_a =TRUE, ofv_fun=crit_fcn, parallel = T, method=c("GA"), iter_max = 1, maximize = F, evaluate_fim = F) # optimize distribution of individuals in 3 groups poped_db_2 <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=sfg, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(prop=0.01,add=0.25), groupsize=32, m=3, xt=list(c( 0.5,1,2,6,8),c(36,72,120), c(10,12,14,16,18,20,22,24)), minxt=0.01, maxxt=120, a=c(DOSE=70), mina=c(DOSE=0.01), maxa=c(DOSE=100)) opt_xt_inds <- poped_optim(poped_db_2, opt_a =TRUE, opt_inds = TRUE, control = list(ARS=list(iter=2), BFGS=list(maxit=2), LS=list(line_length=2)), iter_max = 1) ############## # E-family Optimization ############## # Adding 10% log-normal Uncertainty to fixed effects (not Favail) bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1) bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution bpop_vals, ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value bpop_vals_ed_ln["Favail",] <- c(0,1,0) bpop_vals_ed_ln ## -- Define initial design and design space poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL", fg_file="sfg", fError_file="feps.add.prop", bpop=bpop_vals_ed_ln, notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), groupsize=32, xt=c( 0.5,1,2,6,24,36,72,120), minxt=0, maxxt=120, a=70, mina=0, maxa=100) # E_ln(D) optimization using Random search (just a few samples here) output <- poped_optim(poped.db,opt_xt=TRUE,opt_a=TRUE,d_switch=0, method = c("ARS","LS"), control = list(ARS=list(iter=2), LS=list(line_length=2)), iter_max = 1) get_rse(output$FIM,output$poped.db) # ED with laplace approximation, # optimization using Random search (just a few iterations here) ars.output <- poped_optim(poped.db,opt_xt=T,opt_a=T,method = "ARS", d_switch=0,use_laplace=TRUE,#laplace.fim=TRUE, parallel=T, control = list(ARS=list(iter=5))) }