Function plots the efficiency of windows around the sample time points.
The function samples from a uniform distribution around the sample time
points for each group (or each individual with deviate_by_id=TRUE
,
with slower calculation times) and compares the results with the
design defined in poped.db
. The maximal and minimal allowed values for all design variables as
defined in poped.db are respected (e.g. poped.db$design_space$minxt and
poped.db$design_space$maxxt).
Usage
plot_efficiency_of_windows(
poped.db,
xt_windows = NULL,
xt_plus = xt_windows,
xt_minus = xt_windows,
iNumSimulations = 100,
y_eff = TRUE,
y_rse = TRUE,
ofv_calc_type = poped.db$settings$ofv_calc_type,
mean_line = TRUE,
mean_color = "red",
deviate_by_id = FALSE,
parallel = F,
seed = round(runif(1, 0, 1e+07)),
...
)
Arguments
- poped.db
A poped database
- xt_windows
The distance on one direction from the optimal sample times. Can be a number or a matrix of the same size as the xt matrix found in
poped.db$design$xt
.- xt_plus
The upper distance from the optimal sample times (xt + xt_plus). Can be a number or a matrix of the same size as the xt matrix found in
poped.db$design$xt
.- xt_minus
The lower distance from the optimal sample times (xt - xt_minus). Can be a number or a matrix of the same size as the xt matrix found in
poped.db$design$xt
.- iNumSimulations
The number of design simulations to make within the specified windows.
- y_eff
Should one of the plots created have efficiency on the y-axis?
- y_rse
Should created plots include the relative standard error of each parameter as a value on the y-axis?
- ofv_calc_type
OFV calculation type for FIM
1 = "D-optimality". Determinant of the FIM: det(FIM)
2 = "A-optimality". Inverse of the sum of the expected parameter variances: 1/trace_matrix(inv(FIM))
4 = "lnD-optimality". Natural logarithm of the determinant of the FIM: log(det(FIM))
6 = "Ds-optimality". Ratio of the Determinant of the FIM and the Determinant of the uninteresting rows and columns of the FIM: det(FIM)/det(FIM_u)
7 = Inverse of the sum of the expected parameter RSE: 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))
- mean_line
Should a mean value line be created?
- mean_color
The color of the mean value line.
- deviate_by_id
Should the computations look at deviations per individual instead of per group?
- parallel
Should we use parallel computations (T/F)? Other options can be defined in this function and passed to
start_parallel
. See especially the optionsdlls
andmrgsolve_model
from that function if you have a model defined with compiled code or are using mrgsolve.- seed
The random seed to use.
- ...
Extra arguments passed to
evaluate.fim
Value
A ggplot object.
See also
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_model_prediction()
Other Simulation:
model_prediction()
,
plot_model_prediction()
Other Graphics:
plot_model_prediction()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> y = (DOSE * Favail * KA/(V * (KA - CL/V))) * (exp(-CL/V *
#> xt) - exp(-KA * xt))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557079188b38>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
# Examine efficiency of sampling windows at plus/minus 0.5 hours from
# sample points in the design
plot_efficiency_of_windows(poped.db,xt_windows=0.5)
if(interactive()){
plot_efficiency_of_windows(poped.db,
xt_plus=c( 0.5,1,2,1,2,3,7,1),
xt_minus=c( 0.1,2,5,4,2,3,6,2))
plot_efficiency_of_windows(poped.db,xt_windows=c( 0.5,1,2,1,2,3,7,1))
plot_efficiency_of_windows(poped.db,
xt_plus=c( 0.5,1,2,1,2,3,7,1),
xt_minus=c( 0.1,2,5,4,2,3,6,2),
y_rse=FALSE)
plot_efficiency_of_windows(poped.db,
xt_plus=c( 0.5,1,2,1,2,3,7,1),
xt_minus=c( 0.1,2,5,4,2,3,6,2),
y_eff=FALSE)
}