Skip to contents

Function plots model predictions for the typical value in the population, individual predictions and data predictions.

Usage

plot_model_prediction(
  poped.db,
  model_num_points = 100,
  groupsize_sim = 100,
  separate.groups = F,
  sample.times = T,
  sample.times.IPRED = F,
  sample.times.DV = F,
  PRED = T,
  IPRED = F,
  IPRED.lines = F,
  IPRED.lines.pctls = F,
  alpha.IPRED.lines = 0.1,
  alpha.IPRED = 0.3,
  sample.times.size = 4,
  DV = F,
  alpha.DV = 0.3,
  DV.lines = F,
  DV.points = F,
  alpha.DV.lines = 0.3,
  alpha.DV.points = 0.3,
  sample.times.DV.points = F,
  sample.times.DV.lines = F,
  alpha.sample.times.DV.points = 0.3,
  alpha.sample.times.DV.lines = 0.3,
  y_lab = "Model Predictions",
  facet_scales = "fixed",
  facet_label_names = T,
  model.names = NULL,
  DV.mean.sd = FALSE,
  PI = FALSE,
  PI_alpha = 0.3,
  ...
)

Arguments

poped.db

A PopED database.

model_num_points

How many extra observation rows should be created in the data frame for each group or individual per model. If used then the points are placed evenly between model_minxt and model_maxxt. This option is used by plot_model_prediction to simulate the response of the model on a finer grid then the defined design. If NULL then only the input design is used. Can be a single value or a vector the same length as the number of models.

groupsize_sim

How many individuals per group should be simulated when DV=TRUE or IPRED=TRUE to create prediction intervals?

separate.groups

Should there be separate plots for each group.

sample.times

Should sample times be shown on the plots.

sample.times.IPRED

Should sample times be shown based on the IPRED y-values.

sample.times.DV

Should sample times be shown based on the DV y-values.

PRED

Should a PRED line be drawn.

IPRED

Should we simulate individual predictions?

IPRED.lines

Should IPRED lines be drawn?

IPRED.lines.pctls

Should lines be drawn at the chosen percentiles of the IPRED values?

alpha.IPRED.lines

What should the transparency for the IPRED.lines be?

alpha.IPRED

What should the transparency of the IPRED CI?

sample.times.size

What should the size of the sample.times be?

DV

should we simulate observations?

alpha.DV

What should the transparency of the DV CI?

DV.lines

Should DV lines be drawn?

DV.points

Should DV points be drawn?

alpha.DV.lines

What should the transparency for the DV.lines be?

alpha.DV.points

What should the transparency for the DV.points be?

sample.times.DV.points

TRUE or FALSE.

sample.times.DV.lines

TRUE or FALSE.

alpha.sample.times.DV.points

What should the transparency for the sample.times.DV.points be?

alpha.sample.times.DV.lines

What should the transparency for the sample.times.DV.lines be?

y_lab

The label of the y-axis.

facet_scales

Can be "free", "fixed", "free_x" or "free_y"

facet_label_names

TRUE or FALSE

model.names

A vector of names of the response model/s (the length of the vector should be equal to the number of response models). It is Null by default.

DV.mean.sd

Plot the mean and standard deviation of simulated observations.

PI

Plot prediction intervals for the expected data given the model. Predictions are based on first-order approximations to the model variance and a normality assumption of that variance. As such these computations are more approximate than using DV=T and groupsize_sim = some large number.

PI_alpha

The transparency of the PI.

...

Additional arguments passed to the model_prediction function.

Value

A ggplot object. If you would like to further edit this plot don't forget to load the ggplot2 library using library(ggplot2).

Examples

## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 

library(PopED)

## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.md.CL
#> function (model_switch, xt, parameters, poped.db) 
#> {
#>     with(as.list(parameters), {
#>         y = xt
#>         N = floor(xt/TAU) + 1
#>         y = (DOSE * Favail/V) * (KA/(KA - CL/V)) * (exp(-CL/V * 
#>             (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - 
#>             exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) * 
#>             (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
#>         return(list(y = y, poped.db = poped.db))
#>     })
#> }
#> <bytecode: 0x557071c69eb0>
#> <environment: namespace:PopED>

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
    return(parameters) 
}

## -- Define initial design  and design space
poped.db <- create.poped.database(
  ff_fun=ff.PK.1.comp.oral.sd.CL,
  fg_fun=sfg,
  fError_fun=feps.prop,
  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
  notfixed_bpop=c(1,1,1,0),
  d=c(CL=0.07, V=0.02, KA=0.6), 
  sigma=0.01,
  groupsize=32,
  xt=c( 0.5,1,2,6,24,36,72,120),
  minxt=0,
  maxxt=120,
  a=70)

##  create plot of model without variability 
plot_model_prediction(poped.db)


##  create plot of model with variability by simulating from OMEGA and SIGMA
plot_model_prediction(poped.db,IPRED=TRUE,DV=TRUE)


##  create plot of model with variability by 
##  computing the expected variance (using an FO approximation) 
##  and then computing a prediction interval 
##  based on an assumption of normality
##  computation is faster but less accurate 
##  compared to using DV=TRUE (and groupsize_sim = 500)
plot_model_prediction(poped.db,PI=TRUE)


##-- Model: One comp first order absorption + inhibitory imax
## -- works for both mutiple and single dosing  
ff <- function(model_switch,xt,parameters,poped.db){
  with(as.list(parameters),{
    
    y=xt
    MS <- model_switch
    
    # PK model
    N = floor(xt/TAU)+1
    CONC=(DOSE*Favail/V)*(KA/(KA - CL/V)) * 
      (exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - 
         exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))  
    
    # PD model
    EFF = E0*(1 - CONC*IMAX/(IC50 + CONC))
    
    y[MS==1] = CONC[MS==1]
    y[MS==2] = EFF[MS==2]
    
    return(list( y= y,poped.db=poped.db))
  })
}

## -- parameter definition function 
sfg <- function(x,a,bpop,b,bocc){
  parameters=c( V=bpop[1]*exp(b[1]),
                KA=bpop[2]*exp(b[2]),
                CL=bpop[3]*exp(b[3]),
                Favail=bpop[4],
                DOSE=a[1],
                TAU = a[2],
                E0=bpop[5]*exp(b[4]),
                IMAX=bpop[6],
                IC50=bpop[7])
  return( parameters ) 
}


## -- Residual Error function
feps <- function(model_switch,xt,parameters,epsi,poped.db){
  returnArgs <- ff(model_switch,xt,parameters,poped.db) 
  y <- returnArgs[[1]]
  poped.db <- returnArgs[[2]]
  
  MS <- model_switch
  
  pk.dv <- y*(1+epsi[,1])+epsi[,2]
  pd.dv <-  y*(1+epsi[,3])+epsi[,4]
  
  y[MS==1] = pk.dv[MS==1]
  y[MS==2] = pd.dv[MS==2]
  
  return(list( y= y,poped.db =poped.db )) 
}

poped.db <- 
  create.poped.database(
    ff_fun=ff,
    fError_fun=feps,
    fg_fun=sfg,
    groupsize=20,
    m=3,
    bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9,
           E0=1120,IMAX=0.807,IC50=0.0993),  
    notfixed_bpop=c(1,1,1,0,1,1,1),
    d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09), 
    sigma=c(0.04,5e-6,0.09,100),
    notfixed_sigma=c(0,0,0,0),
    xt=c( 1,2,8,240,240,1,2,8,240,240),
    minxt=c(0,0,0,240,240,0,0,0,240,240),
    maxxt=c(10,10,10,248,248,10,10,10,248,248),
    discrete_xt = list(0:248),
    G_xt=c(1,2,3,4,5,1,2,3,4,5),
    bUseGrouped_xt=1,
    model_switch=c(1,1,1,1,1,2,2,2,2,2),
    a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24),c(DOSE=0, TAU=24)),
    maxa=c(DOSE=200,TAU=40),
    mina=c(DOSE=0,TAU=2),
    ourzero=0)

##  create plot of model and design 
plot_model_prediction(poped.db,facet_scales="free",
                      model.names = c("PK","PD"))


##  create plot of model with variability by  
##  computing the expected variance (using an FO approximation) 
##  and then computing a prediction interval 
##  based on an assumption of normality
##  computation is faster but less accurate 
##  compared to using DV=TRUE (and groupsize_sim = 500)
plot_model_prediction(poped.db,facet_scales="free",
                      model.names = c("PK","PD"),
                      PI=TRUE,
                      separate.groups = TRUE)