This is a residual unexplained variability (RUV) model function that encodes the model described above.
The function is suitable for input to the create.poped.database
function using the
fError_file
argument.
Arguments
- model_switch
a vector of values, the same size as
xt
, identifying which model response should be computed for the corresponding xt value. Used for multiple response models.- xt
a vector of independent variable values (often time).
- parameters
A named list of parameter values.
- epsi
A matrix with the same number of rows as the
xt
vector, columns match the numbers defined in this function.- poped.db
a poped database. This can be used to extract information that may be needed in the model file.
Value
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
See also
Other models:
feps.add()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.md.KE()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Examples
library(PopED)
## find the parameters that are needed to define in the structural model
ff.PK.1.comp.oral.md.CL
#> function (model_switch, xt, parameters, poped.db)
#> {
#> with(as.list(parameters), {
#> y = xt
#> N = floor(xt/TAU) + 1
#> y = (DOSE * Favail/V) * (KA/(KA - CL/V)) * (exp(-CL/V *
#> (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 -
#> exp(-CL/V * TAU)) - exp(-KA * (xt - (N - 1) * TAU)) *
#> (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
#> return(list(y = y, poped.db = poped.db))
#> })
#> }
#> <bytecode: 0x557071c69eb0>
#> <environment: namespace:PopED>
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c( V=bpop[1]*exp(b[1]),
KA=bpop[2]*exp(b[2]),
CL=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1],
TAU=a[2])
return( parameters )
}
## -- Define design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
groupsize=20,
m=2,
sigma=c(0.04,5e-6),
bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9),
d=c(V=0.09,KA=0.09,CL=0.25^2),
notfixed_bpop=c(1,1,1,0),
notfixed_sigma=c(0,0),
xt=c( 1,2,8,240,245),
minxt=c(0,0,0,240,240),
maxxt=c(10,10,10,248,248),
a=cbind(c(20,40),c(24,24)),
bUseGrouped_xt=1,
maxa=c(200,24),
mina=c(0,24))
## create plot of model without variability
plot_model_prediction(poped.db)
## evaluate initial design
FIM <- evaluate.fim(poped.db)
FIM
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.05336692 -8.683963 -0.05863412 0.000000 0.000000 0.000000
#> [2,] -8.68396266 2999.851007 -14.43058560 0.000000 0.000000 0.000000
#> [3,] -0.05863412 -14.430586 37.15243290 0.000000 0.000000 0.000000
#> [4,] 0.00000000 0.000000 0.00000000 999.953587 312.240246 3.202847
#> [5,] 0.00000000 0.000000 0.00000000 312.240246 439.412556 2.287838
#> [6,] 0.00000000 0.000000 0.00000000 3.202847 2.287838 3412.005199
det(FIM)
#> [1] 3.627987e+12
get_rse(FIM,poped.db)
#> V KA CL d_V d_KA d_CL
#> 8.215338 10.090955 4.400304 39.833230 60.089601 27.391518