Skip to contents

PopED computes optimal experimental designs for both population and individual studies based on nonlinear mixed-effect models. Often this is based on a computation of the Fisher Information Matrix (FIM).

Details

To get started you need to define

  1. A model.

  2. An initial design (and design space if you want to optimize).

  3. The tasks to perform.

There are a number of functions to help you with these tasks. The user-level functions defined below are meant to be run with a minimum of arguments (for beginners to advanced users). Many of the other functions in the package (and not listed here) are called by these user-level functions and are often not as user friendly (developer level or advanced user functions).

Define a structural model: ff.PK.1.comp.oral.md.CL, ff.PK.1.comp.oral.md.KE, ff.PK.1.comp.oral.sd.CL, ff.PK.1.comp.oral.sd.KE, ff.PKPD.1.comp.oral.md.CL.imax, ff.PKPD.1.comp.sd.CL.emax.

Define a residual unexplained variability model (residual error model): feps.add.prop, feps.add, feps.prop.

Create an initial study design (and design space): create.poped.database.

Evaluate the model and/or design through simulation and graphics: plot_model_prediction, model_prediction, plot_efficiency_of_windows.

Evaluate the design using the FIM: evaluate_design, evaluate.fim, evaluate.e.ofv.fim, ofv_fim, get_rse.

Optimize the design (evaluate afterwards using the above functions): poped_optim,

See the "Examples" section below for a short introduction to using the above functions. There are several other examples, as r-scripts, in the "examples" folder in the PopED installation directory located at (run at the R command line):

system.file("examples", package="PopED").

References

  1. J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.

  2. M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software for optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.

  3. https://andrewhooker.github.io/PopED/

Author

Maintainer: Andrew C. Hooker andrew.hooker@farmaci.uu.se (ORCID) [translator, copyright holder]

Authors:

  • Marco Foracchia (O-Matrix version)

  • Sebastian Ueckert (ORCID) (MATLAB version)

  • Joakim Nyberg (MATLAB version)

Other contributors:

  • Eric Stroemberg (MATLAB version) [contributor]

  • Martin Fink (Streamlining code, added functionality, vignettes) [contributor]

  • Giulia Lestini (Streamlining code, added functionality, vignettes) [contributor]

Examples


library(PopED)

##-- Model: One comp first order absorption
## -- Analytic solution for both mutiple and single dosing
ff <- function(model_switch,xt,parameters,poped.db){
  with(as.list(parameters),{
    y=xt 
    N = floor(xt/TAU)+1
    y=(DOSE*Favail/V)*(KA/(KA - CL/V)) * 
      (exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) - 
         exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))  
    return(list( y=y,poped.db=poped.db))
  })
}

## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c( V=bpop[1]*exp(b[1]),
                KA=bpop[2]*exp(b[2]),
                CL=bpop[3]*exp(b[3]),
                Favail=bpop[4],
                DOSE=a[1],
                TAU=a[2])
  return( parameters ) 
}

## -- Residual unexplained variablity (RUV) function
## -- Additive + Proportional  
feps <- function(model_switch,xt,parameters,epsi,poped.db){
  returnArgs <- do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db)) 
  y <- returnArgs[[1]]
  poped.db <- returnArgs[[2]]
  
  y = y*(1+epsi[,1])+epsi[,2]
  
  return(list( y= y,poped.db =poped.db )) 
}

## -- Define design and design space
poped.db <- create.poped.database(ff_fun=ff,
                                  fg_fun=sfg,
                                  fError_fun=feps,
                                  bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(V=0.09,KA=0.09,CL=0.25^2), 
                                  sigma=c(0.04,5e-6),
                                  notfixed_sigma=c(0,0),
                                  m=2,
                                  groupsize=20,
                                  xt=c( 1,2,8,240,245),
                                  minxt=c(0,0,0,240,240),
                                  maxxt=c(10,10,10,248,248),
                                  bUseGrouped_xt=1,
                                  a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24)),
                                  maxa=c(DOSE=200,TAU=24),
                                  mina=c(DOSE=0,TAU=24))

##  create plot of model without variability 
plot_model_prediction(poped.db, model_num_points = 300)



if (FALSE) { # \dontrun{
  
  ##  create plot of model with variability 
  plot_model_prediction(poped.db, IPRED=T, DV=T, separate.groups=T, model_num_points = 300)
  
} # }

## evaluate initial design
evaluate_design(poped.db)
#> $ofv
#> [1] 28.9197
#> 
#> $fim
#>                V          KA           CL        d_V       d_KA        d_CL
#> V     0.05336692   -8.683963  -0.05863412   0.000000   0.000000    0.000000
#> KA   -8.68396266 2999.851007 -14.43058560   0.000000   0.000000    0.000000
#> CL   -0.05863412  -14.430586  37.15243290   0.000000   0.000000    0.000000
#> d_V   0.00000000    0.000000   0.00000000 999.953587 312.240246    3.202847
#> d_KA  0.00000000    0.000000   0.00000000 312.240246 439.412556    2.287838
#> d_CL  0.00000000    0.000000   0.00000000   3.202847   2.287838 3412.005199
#> 
#> $rse
#>         V        KA        CL       d_V      d_KA      d_CL 
#>  8.215338 10.090955  4.400304 39.833230 60.089601 27.391518 
#> 

if (FALSE) { # \dontrun{
  
  # Optimization of sample times
  output <- poped_optim(poped.db, opt_xt=TRUE, parallel = TRUE)
  summary(output)
  get_rse(output$FIM, output$poped.db)
  plot_model_prediction(output$poped.db)
  
  # Optimization of sample times and doses
  output_2 <- poped_optim(poped.db, opt_xt=TRUE, opt_a=TRUE, parallel = TRUE)
  summary(output_2)
  get_rse(output_2$FIM,output_2$poped.db)
  plot_model_prediction(output_2$poped.db)
  
  # Optimization of sample times with only integer time points in design space
  # faster than continuous optimization in this case
  poped.db.discrete <- create.poped.database(ff_fun=ff,
                                             fg_fun=sfg,
                                             fError_fun=feps,
                                             bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9), 
                                             notfixed_bpop=c(1,1,1,0),
                                             d=c(V=0.09,KA=0.09,CL=0.25^2), 
                                             sigma=c(0.04,5e-6),
                                             notfixed_sigma=c(0,0),
                                             m=2,
                                             groupsize=20,
                                             xt=c( 1,2,8,240,245),
                                             minxt=c(0,0,0,240,240),
                                             maxxt=c(10,10,10,248,248),
                                             discrete_xt = list(0:248),
                                             bUseGrouped_xt=1,
                                             a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24)),
                                             maxa=c(DOSE=200,TAU=24),
                                             mina=c(DOSE=0,TAU=24),
                                             ourzero = 0)
  
  output_discrete <- poped_optim(poped.db.discrete, opt_xt=T, parallel = TRUE)
  
  
  summary(output_discrete)
  get_rse(output_discrete$FIM,output_discrete$poped.db)
  plot_model_prediction(output_discrete$poped.db)
  
  # Efficiency of sampling windows
  plot_efficiency_of_windows(output_discrete$poped.db,xt_windows=0.5)
  plot_efficiency_of_windows(output_discrete$poped.db,xt_windows=1)
  
} # }